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TECHNICAL NOTE 110. 13^ 

CRITICAL STRESS OF THIN-WAULED CYLINDERS IN TORSION 

By S. B. Batdorf, Manuel Stein, and Murry Schildcrout 

SUMMARY 

A theoretical solution is given for the critical stress of 
thin-walled cylinders loaded in torsion. The results are presented 
in terms of a few simple formulas and curves which are applicable 
to a wide range of cylinder dimensions from very short cylinders of 
large radius to long cylinders of small radius. Theoretical 
results are found to he in somewhat tetter agreement with experi- 
mental results than previous theoretical work for the Bame range 
of cylinder dimensions. 

INTRODUCTION 

For moBt practical purposes the solution to the problem of 
the buckling of cylinders in torsion was given by DonneTL in an 
important contribution to shell theory published in 1933 (reference 1). 
The present paper, which gives a solution to the same problem, 
has two main objectives: first, to present a theoretical solution 
of somewhat improved accuracy; second, to help complete a series 
of papers treating the buckling strength of curved sheet from a 
unified viewpoint based on a method of analysis essentially 
equivalent to that of Donnell but considerably simpler.  (See, 
for example, references 2 and 3.) 

The method of solution in the present paper,is that developed 
in reference 3« The steps in the theoretical computations of the 
critical stress are contained in the appendix. The results are 
given in the form of nondimensional curves and simple approximate 
formulas which follow these curves closely in the usual range of 
cylinder dimensions. 
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' SYMBOLS 

J,m,n integers 

p arbitrary constant 

r radius of cylinder 

t thickness of cylinder vail 

u axial component of displacement; positive in x-direction 

v      circumferential component of displacement; positive in 
y-direction 

w       radial component of displacement; positive outward . 

x       axial coordinate of cylinder 
» 

y       circumferential coordinate of cylinder 

/  Et3   \ D      flexural stiffness of plate per unit length / ] 

E      Young's modulus 

L       length of cylinder 

Q      mathematical operator defined in appendix 

Z -     curvature parameter ( ^~ Jl — \fi    or [*) c yl — 

an, fcn   coefficients of deflection functions 

kB      critical shear-stress coefficient appearing in 

u2 

Mn = - 

o 
formula Tcr w ks 2~£ 

L2t 

(n2 + ß2)2 + ; XZZ2Pk , 

^(n2+ß2)2; 8ß 

Vm,Wm   deflection functions defined in appendix 
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"•J 
X      half wave length of buckles In circumferential direction 

H      Poisscn'.s ratio 

T       critical shear stress 
cr 

V* = —T- + 2 + —f- 
bxk        dx?  öy2  0/  . 

v"      inverse of v , defined "by v~ *" v*w = w 

'"'RESULTS AMD DISCUSSION 

The critical shear stresses for cylinders are obtained from 
the equation 

-n2D 
Tcr = ls:s-r- 

L2t 

The values'of 1:B for cylinders with either simply supported or 
clamped edges are given in the form of logarithmic plots in 
figure 1. The ördinate in this figure is the critical shear- 
stress coefficient ks  The abscissa is a curvature parameter Z 
which Is Given directly by the theory and involves the dimensions 
of the cylinder pnd Poisson's ratio. 

For very short cylinders the value of the shear-stress coef- 
ficient approaches the values for flat plates, 5-3^.when the edc;es 
are simply supported and C.98 when the edges are clamped. As Z 
increases ka also increases and the curves which defined ks 
are given approximately by straight lines. For simply supported 
cylinders, '• ' • 

ks = O.85 Z3/k 

For cylinders' with clamped edges, 

ka = 0.93 Z3^ 
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The range of validity of these formulae is approximately 

100 < Z < 10 2- . 
t2 

For the case of long cylinders the curves of figure 1 split 
into a series of curves depending upon the radius—thickness ratio. 
These curves, -which correspond to buckling of the cylinder into 
two circumferential waves (n = 2), depart from the straight lines 

at approximately Z = 10^- or approximately - = 3jf •    Because 

the critical shear stress of a long cylinder is almost 
independent of end conditions, the curves for different values 
of r/t apply both to cylinders with simply supported edges and 
to cylinders with clamped edges. These curves are probably some- 
what inaccurate, however, because one of the requirements for the 
validity of the simplified equation of equilibrium used is 
that n2» 1. A calculation for long cylinders made by Schwerin 
and reported in reference 1 by Donnell suggests that all values 
corresponding to the curves given in the present paper for n = 2 
are slightly high. 

In figure 2 the results of the present paper are compered with 
those given by Donnell (reference 1) and Leggett (reference 4). 
The present solution agrees quite closely with that of Donnell . 
except in the transition region between the horizontal part and 
the sloping straight-line part of the curves. In this region the 
present results are appreciably less than those of Donnell 
(maximum deviation about 17 percent) but are in close agreement with 
Leggett1s results, which are limited to low values of Z. 

In figure 3 the present solution and that of Donnell for the 
critical shear.stress of simply supported cylinders are compared 
on the basis of agreement with test results obtained by a number 
of investigators.  (See referencesl, 5, 6, and 7.) The curves 
giving the present solution are appreciably closer to the test 
points. More than 80 percent of the test points are within 20 percent 
of the values corresponding to the theoretical curve for simply 
supported cylinders given in the present paper, and all points 
are within 35 percent of values corresponding to the curve. 

In figure k the present solution for critical shear-stress 
coefficients of long cylinders which buckle into two half waves 
is given more fully than in figure 1 and is compared with test 
results of references 1 and 8. 
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The computed values from which the theoretical curves presented 
in this paper were drawn are given in tables 1 and 2. 

CONCLUDING REMARKS 

A theoretical solution is given for the buckling stress of 
thln-valled cylinders loaded in torsion. The results are applicable 
to a wide range of cylinder dimensions from very short cylinders 
of large radius to very long cylinders of small radius. The 
theoretical results are found to be in somewhat better agreement with 
experimental results than previous theoretical work for the same 
range of cylinder dimensions. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., March 20, 19V? 
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APPEEDIX 

THEORETICAL SOLUTION 

The critical shear stress at which buckling occurs in a 
cylindrical shell may be obtained by solving the equation of 
equilibrium. 

Equation of equilibrium.- The equation of equilibrium for 
a slightly buckled cylindrical shell under shear is (reference 3) 

_Ji   Et„.li o^v  _  . d?w  . DV*w + —V ^ ^—j- + 2xcrt   = 0 
r2   ox* 3oc öy (1) 

vhere x is the axial direction and y the circumferential 
direction. The following figure shows the coordinate system 
used in the analysis: 

I I 
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Dividing through equation (l) by D gives 

^*^$**4&-°      <a> 
vhere the dimensionless parameters Z and kB are defined "by 

and 

k - TcrtL2 8"  *2D 

The equation of equilibrium may "be represented "by 

Qw = 0 (3) 

where Q is defined "by 

I>    ox4     L2 äx dy 

Method of solution.- The equation of equilibrium may be solved 
by using the Galerkin method as outlined in reference 9» In 
applying this method, equation (3) is Bolved by expressing v in 
terms of an arbitrary number of functions (VQ, V±,   . . . Vj, Wo, 
Wi,•. . ., Wj) that need not satisfy the equation but do satisfy 
the boundary conditions on vj thus let 

J J w e 2L   amvm + ]>" *mHn M 
m=Ö"     m=0 
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The coefficient am and tfa   are then determined by the equations 

ax.ii 

UO to 
VnQw dx dy = 0 

? 
2JI/1L 

T^Qw äx  dy = 0 
0 I/O 

(5) 

where 
n = 0, 1, 2, . . ., j 

The solutions given in the present paper satisfy the following 
conditions at the ends of the cylinder: 

For cylinders of short and medium length with simply supported 

edges w. = a* w = v = 0 and u is unrestrained. For cylinders of 

short and medium length with clamped edges w -  «jp = u = 0 and v is 
unresLrained. For long cylinders w = 0. (See references 2 and 3.) 

Solution for Cylinders of Short and Medium Length 

Simply supported edges.- A.deflection function for simply 
supported edges may "be taken as the infinite series 

w = sin Ä C am sin SS + cos S V b* sin BS. 
"..*./-.    ..... L •     . \   Z_. .:•    L.:- 
 m=l ... nt=l .... 

(6) 

where \   is the half wave length of the buckles in the cir- 
cumferential direction. Equation (6) is equivalent to equation (k) 
if 
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Vn = ein AI sin S3S 
°      \     L 

u = COg 2£ ein 2*£ 
A,     L 

(7) 

Substitution of" expressions (6) and (7) into equations (5) and 
integration over the.limits indicated give 

n <n2 +. ß2)2 + _JS!S!L_ 
*V + ß2)2 

CO 

/   in 
« Z__   n2 - m2 

r- 

l)a (n2 + ß2)2 + 12Z2n^ 

„4(n2 + ß2)2 

m=l 

CO 
>(8) 

8knß \      mn + -f~;    %-  
m=l 

= 0 

•where 

"l 
n = 1; 2, 3, . • . 

and m ± n is odd. Equations (8) have a solution if the following 
determinant vanishes: 
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n»l 

n=2 

n=3 

n=5 

n=6 

•^8 . 

2      a3 

o    e 
0    £*fe      ° 

°   #3 
ke 

0 

0 0 

0 0 

0 . 0 

0 

0 

0 

o  ^k 

ä5 

0 

0 

0 

0 

0 

0 

0 ^ 

a6 

0 

0 

0 

0 

0 

0 tii* 

Dl 

0 

.2 
3 

0 

k_ 
"l5 

0 

.£. 
35 

2 
3- 
0 

6 
5 
0 

.10 
21 

0 

b3 ^ *5 H   ••• 

0 JL 0 i-   ... 
15 35 

6 0 m 0   ... 
5 21 
0 12 0 2 «r     • • • 

7 3 
L2 0 20 0    ... 
7 9 
o .20 0 22   ... 

9 li 
2 o .22 o   ... 
3 li 

n =1 0 
3 

0 4 
"15 

0 6 
~35    •" 

ri- =2 2 
3 

0 •I 0 2l o   ... 

ll: =3 0 6 
5 

0 12 
7 

0 2 
'I    •" 

n= «If 
h 

15 
0 12 

7 
0 20 

9 
0     ... 

n- --> 0 
21 

0 20 
9 

0 -22   ... 
li 

x\- =6 6 
35 

0 2 
3 

0 22 
li 

o   ... 

^M1      0        0        0        0        0. 

0    7^2      0        0        0        0. 

0 

0        0 

0    ~i<U      0        0 

*-s 
0 

0    . 

0    T^-M^      0        0    . 

0        0    r±M*      0    . 

oooo  ^-M^ . 

(9) 

where 

V _    Jt 

8ß 
(n2 + ß2)2 + 12Z2nV 

«Hr£ + ß2)2j 

By rearranging rows and columns, the infinite determinant can be factored 
into the product of two infinite subdeterminants    which are equivalent 
to each other.    The critical stress may then "be obtained from the 
following equation: 
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n=l 

n=2 

n=3 

n=6 

n=l 

n=2 

n=3 

n=l* 

n=5 

n=6 

al  *2  a3 

12 

15 

a5 

0 

0 .# 

0 

15 
0 

35 

10 
21 

^  0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

12 
7 

1, °  f ^'T 20 
9 

*6 

6 
35 

0 

2 
•5 
*j 

0 

30 0 -f  &5 If 
2 
3 

JO  1, 
11 ^s 

0 &   fi* 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 . 

0 . 

0 . 

0 . 

0 . 

0 . 

Dl 

0 

0 

0 

0 

0 

0 

a2 

0 

0 

0 

0 

0 

0 

D3 

0 

0 

0 

0., 

0 

0 

0 

0 

0 

0 

0 

0 

D5 

0 

0 

0 

0 

0 

0 

0 . 

0 . 

0 . 

0 . 

0 . 

0 . 

&>• -f 

0 

'15 
0 

6_ 
"35 

1Q 
21 

_2 

0 -¥ ^ f   ° 
0 -1 .20 

11 £"6 

= 0 

(10) 

The firBt approximation, obtained from the second-order determinant, 
IB given by 

•e; M3M2 (ID 
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The second approximation^ obtained from the third-order determinant, 
is given by ' 

kD2 
M1M2M3 

-<$f**($h 
(12) 

Th© third approximation, obtained from the fourth-order determinant, 
1B given "by 

*eVf + ^y _ ^(ufKl„2 + (|VMlMlt + (^)v3 • (§)V> 

+ MiMgMoM^ = 0 (13) 

Each of these equations shows that for a selected value of the 
curvature parameter Z the critical buckling stress of a cylinder 
depends on the wave length. Since a structure buckles at the lowest 
stress at which instability can occur, kB is minimized with respect 
to the wave length by substituting values of ß into the equation 
until the minimum value of kB can be obtained from a plot of ks 
against ß. This procedure is permissible when 

itr 
that is, 

when the cylinder buckles into more than two circumferential waves. 
For the limiting case of a cylinder buckling into two waves, 
see the section of the present appendix entitled "Solution for 
a Loflg Cylinder" which follows. 

Figure 5(a) shows the convergence of the determinant for cylinders 
with Eimply supported edges. 

Clamped edges.— A procedure similar to that used for cylinders 
with simply supported edges may be followed for cylinders with 
clamped edges. The deflection function used is the following 
series: 

w = sin 2£ > am 

5=0 

mnx 
COB -= cos 

+ cos -*£ \    bm 

m=0 

mnx     (m + 2)nx 
cos —-- — cos J —-— 

L L (l*) 

II 
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Bach tern cf this «erlös satisfies the condition on v at the edges. 
The functions "Vjj end Wh are now derined ee follows: 

Vn => ein £Z cos E2X _ 
L  L 

cos (° + 2)*X 
L 

.. 

Wn = cos 2£ cos (n f 2)«X 
L 

(15) 

where 

n  = 0, 1, 2, . . . 

When the Bame operations as those carried out for the case 
of simply supported edges are performed, the following simultaneous 
equations result: 

For n = 0, 

-go.. 

a0(2Mr) + M2) - a£M2 
+ ks  ^L  bm 

m-1,3,5  L 

m' 2   _ Jm+ 2)2_ 
m2 - if  (m + 2)2 - 4 

For n c 1, 

a! (Mi + M3) - a^ +  ks  \   "bm 

m=Q,2,4 

m<= m' 2 

m2 - 1  m2 - 9 

- _lE±i?lL_ +  (m + 2)g 

(m + 2)2 - 1  (m + 2)2 - 9 

For n = 2, 3, 4 . . ., 

= 0 

00 

an(Mn + Mn+2) - an_2Mn - an+2Mn+2 + kB/    ha. 
m=0 

sr 
m2 — n2 

mc 
fm+ 2)

2   ,     faf 2)2 

m2 - (n + 2)2  (m + 2)2 - n2  (m + 2)2 - (n + 2)2 
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vhere   min   is odd.     < 

For    n = 0, 

b0(2M0+ Mg) - "bgMg - ka      ^     % 
»=1,3,5 

m2 (m + 2)2 

m2 - if      (m + 2)2 - 4 

For    n = 1, 

*l(Mi + M3) - "b3M3 - kB      2_       ^ 
m=0,2,4 

m2 ng (m + 2)2 

- - 1     m2 - 9      (m + 2)2 - 1 

(m + 2)2 _ 9 _ 

For    n = 2,  3,  ^,   .   .   ., 

= 0 

M^n + Mn+2) " bn-2Mn - *n+2Mn+2 - ks £__ % 
n=0 

r    ffi2 mc 

nv ,2 _ n2      m2 - (n + 2); 

(m + 2)2        + (m + 2)2 

(m + 2)2-n2      (m _+ 2)2 - (n + 2)2 
= 0 (16) 

vhere   m ± n    is odd    and 

*-fi 
"(n2 +  ß2)2 + ^-IgzSn^L—' 

jt^(n2 + ß2)2 

The infinite determinant formed "by these equations can be rearranged 
so es to factor into the product of two determinants which are 
equivalent to eech other. The vanishing of one of these determinants 
leads to the following equation (limited for convenience to the 
sixth order): 
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n=0 

n=l 

n=2 

n=3 

n=4 

n=5 

a,. 

3£ 
15 

_il 
" 105 

315 

a2 

-4^ 
352 

105 

*3 

ÜL 
105 

^W)   - g|   - ^M3 

 F'(Mp"rM4) 
105   s 

B 

315 

22 
35 

-g^ 

^3 

^2 
35 

^  ^(M^m)   - 
315 

4l6o 

s 

4l6o 

693 

315 

1376 , 

1155 

1287" 

1155    V5    1287 kB^5
+M7J 

-^   -^^VMfi) 

= 0 (17) 

The first approximation, obtained from the second-order 
determinant, is given "by 

- (^l)2 (2M0 + M2) (MX + M3) (18) 

The second approximation, obtained from the third-order determinant, 
is given by 

(Mi + M3) I (2M0 4 Mg) (Mg + Ml») - M2
2] 

(19) 

The third approximation, obtained from the fourth-order determinant, 
is given by 
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Solution for e Long Cylinder 

A long slender cylinder 
(Z>10$) 

will "buckle into two 

waves in the circumferential direction.  If, in the previous 
cases of cylinders with simply supported or clamped edges, the 
half wave length in the circumferential direction X    is taken 
as «r/2, it is possible to find the critical stress of a long 
slender cylinder with the corresponding edge conditions. This 
method of solution is laborious, however, because determinants of 
high order must be employed to obtain solutions of reasonable 
accuracy. The labor is greatly reduced by the use of the following 
deflection function: 

v. = a^ < cos 

I 
(Ks*a ¥)- cos (p -t- 2)itx 

r 
1 (21) 

where p + 1 is the phase difference of the circumferential waves 
at the two ends of the cylinder measured in quarter-revolutions. 
This equation satisfies the single boundary condition w = 0. 
With this deflection function, the functions V and V all 
vanish except 

Vl . cos^ + ^V cos (p + 2)?tx 2Z 
r 

(22) 

Use of equations (5), (21), and (22) and the relation 2X » rtr 
results in the following equation: 

k„ m  3 J  > + JL/LV* 12 +  12ZV 
8L(P + l)|u        «2W   J        n4[p2 + JL(^ 

h  /L\2 <-J»?^G) 12Z2(p + 2)k 

(P+.2)2 + 4 «2 mi >   (23) 
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This equation may te written 

.' 8(p + 1) * r i/l - n£ if* 

12Z2p^ 

^ + r?- 
/ 

zt   Y 

(P + 2)2 + * 
zt 1 2 

j- *2r /TT^2 
' lgz2(p + -2) 

(p + 2)2 + JL_Z± 
*2-/l-,2 

(24) 

For given values of Z and £ |/l — n2^ p is varied until a 

minimum value of ks is obtained from a plot of p and corresponding 
values of k8. The critical Btress of a long slender cylinder is 
very insensitive to edge restraint; therefore, the solution applies 
with sufficient accuracy to cylinders with either simply supported 
or clamped edges. The shear-stress coefficient for long slender 
cylinders is plotted against the curvature parameter in figure k, 
and parts of these curves also^ appear in figure 1. 
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TABLE 1 

THEORETICAL SHEAR-STRESS COEFFICIENTS AMD WAVE LENGTHS 

OF BUCKLES FOR SHORT- AND ME3DIUM-LENGTH CYLINDERS 

) 
 r< 

z 

1  
First approximation Second approximation Third app -oximation 

ks ß k8 ß k8 ß 

Cylinders with simply supported edges 

0 
1 
5 

10 
30 

100 
300 

1,000 
10,000 
100,000 

5.60 
5.69 
6.68 
8.36 

14.93 
34.09 
76.80 

189.5 
107? 
6050 

0.770 
.805 

1.00 
1.24 
1.82 
2.74 
3.86 
5.4o 

10.0 
17.9 

5.34 
5.42 
6.22 
7.55 

12.69 
27.86 
62.47 

153.0 
871.2 
4920 

0.790 
.860 

1.015 
I.265 
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TABLE 2 

THEORETICAL SHEAR-STRESS COEFFICIENTS 

FOE LONG CHUffiES 
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(a) Simply   supported   edges. 
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Figure 2.- 

(b)  Clamped   edges. 

Comparison of theoretical curves for critical stress of 
thln-walled cylinders in torsion. 
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Fig. 4 NACA TN No. 1344 
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(a) Simply  supported   edges. 
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(b) Clamped   edges. 

Figure 5.-   Successive approximations of critical shear-stress 
coefficients for thin-walled cylinders in torsion. X 
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